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SUMMARY

In this study, the deformability of airway walls is taken into account to study airflow patterns and airway
wall stresses in the first generations of lower airways in a real lung geometry. The lung geometry is
based on CT scans that are obtained from in vivo experiments on humans. A partitioned fluid–structure
interaction (FSI) approach, realized within a parallel in-house finite element code, is employed. It is
designed for the robust and efficient simulation of the interaction of transient incompressible Newtonian
flows and (geometrically) non-linear airway wall behavior. Arbitrary Lagrangian–Eulerian-based stabilized
tetrahedral finite elements are used for the fluid and Lagrangian-based 7-parametric mixed/hybrid shell
elements are used for the airway walls using unstructured meshes due to the complexity of the geometry.
Airflow patterns as well as airway wall stresses in the bronchial tree are studied for a number of different
scenarios. Thereby, both models for healthy and diseased lungs are taken into account and both normal
breathing and mechanical ventilation scenarios are studied. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Airflow in the lung is of high interest in pulmonary medicine. For example, airflow patterns and
the resulting particle and aerosol depositions play a key role in the pharmaceutic industry. They are
also of interest in intensive-care medicine when patients have to be mechanically ventilated. We
are interested in airflow patterns and stress distributions in airway walls of mechanically ventilated
patients, especially those with acute lung injuries such as acute respiratory distress syndrome and
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acute lung injury. Up to now, it is still not clear how to ventilate these patients and the mortality
rate of patients with acute lung injuries is quite high, i.e. around 50%.

Most existing numerical studies on airflow patterns in the respiratory system were performed
with idealized geometries such as the Weibel [1] or Horsfield et al. [2] models, Asgharian and
Anjilvel [3], Balashazy and Hoffmann [4], Comer et al. [5, 6], Kimbell et al. [7], Liu et al. [8, 9],
Yu et al. [10, 11], Zhang and Kleinstreuer [12] and Zhang et al. [13, 14]. Only few studies are
based on ‘real’, i.e. based on 3D imaging, airway geometries [15–17]. Almost all studies, both
with artificial and real geometries, do not take airway deformations and fluid–structure interaction
(FSI) effects into account [16–22]. FSI studies in lower airway geometries, including complex
phenomena such as closure and reopening of collapsable tubes, were done only in the lower
cartilage-free generations of the lung and were restricted to simplified models/geometries and to
single bifurcations [23–26].

In former studies (e.g. [27]) we have found that specific geometric features are essential, see
also Liu et al. [8, 9], Nowak et al. [17], and hence that artificial geometries are not sufficient in
several aspects. In pure computational fluid dynamics (CFD) studies, as reported in Rabczuk et al.
[27], we found severe differences in flow characteristics between artificial and real geometries
of the bronchial tree. Consequently, the conjecture seems obvious that even small movements of
airway walls can play a severe role on airway flow characteristics. Despite the overall movement
of the bronchial tree, cross-sectional deformations in the trachea and in the first airway generations
are usually rather small. This is mainly due to the fact that in this region airway walls are rather
stiff and mainly consist of cartilage. However, as can easily be seen from 4D medical imaging and
also confirmed by our medical partners, along with some lung diseases such as chronic obstructive
pulmonary disease (COPD) even in the trachea, cross sections even during normal breathing can
change quite significantly.

Our final goal is to understand the breathing/ventilation process in the respiratory system in
order to develop together with our medical partners a strategy to better ventilate patients, especially
those with acute lung injuries. The breathing process governs flow patterns, velocity and flow
distributions, stress and strain distributions in the airway walls, etc. In this study, we try to obtain
a first insight into FSI effects during this process. In vivo boundary conditions are often very
hard to specify or measure. Therefore, the employed boundary conditions are sometimes non-
physiological for this initial study. Nevertheless, the adopted model will allow helpful insights.
Later on more realistic models will be studied, e.g. taking into account the actual composition of
airway walls or pressure differences inside and outside the airway walls. One could in the future
also use registration techniques and inverse analysis along with 4D medical imaging.

The computation of FSI problems requires the solution of the coupled fluid and solid underlying
governing equations. FSI problems are coupled problems with kinematical and dynamical coupling
conditions at the fluid–structure interface. There are two major approaches to solve a coupled FSI
problem. In the monolithic approach, all field equations of the FSI problem—i.e. fluid, solid and
often also mesh motion—are solved at the same time [28, 29]. Some drawbacks of monolithic
approaches are size and conditioning of the system of equations and often missing modularity of
the code. Partitioned approaches treat the fluid and the solid domains separately. In each cycle,
information has to be transferred from the fluid to the solid and vice versa. Various partitioned
approaches have been developed, ranging from weakly coupled staggered schemes [30–32] to
iterative or strong coupling schemes [33–44]. Strong coupling schemes are particularly needed
for stability reasons [45] in many biomechanics problems. The linearized system of equations is
solved independently in the solid and fluid domains. The major advantage of this approach is that
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the solvers for the solid and fluid domains can be handled separately, which makes the method very
flexible. The major drawback is a slight increase in computation time since additional iterations
between the fluid and solid domains are necessary. Other drawbacks for very specific types of
problems are discussed in Küttler et al. [37]. In the fluid domain, we assume Newtonian fluids
under transient incompressible flow conditions. Owing to the complex geometries considered here,
tetrahedral finite elements based on an arbitrary Lagrangian–Eulerian (ALE) description of motion
are used. In the solid domain, we employ 7-parametric triangular shell elements, Bischoff and
Ramm [46] and Bischoff et al. [47], which represent the airway walls.

We use a partitioned approach that is based on a non-overlapping non-conforming iterative
Dirichlet–Neumann substructuring scheme [36, 40, 44]. The coupling approach prescribes fluid
velocities at the coupling interface of the fluid domain and applies the resulting forces to the
coupling interface of the structural domain. Essential for robustness and efficiency of the coupling
algorithm are the applied acceleration schemes for the iterative process [36, 40]. For all numerical
examples in this paper, the Aitken acceleration has been employed. An ALE formulation is
employed in order to account for the temporal deformation of the fluid domain. Thus, the fluid
mesh is adjusted to the structural deformation during the solution process. The ALE mesh is
deformed by an elastic body analogy interpolation according to an algorithm as described, e.g. in
[48, 49].

We will present FSI studies in a four-generation lower airway model of CT scan-based lung
geometries. The CT scans are obtained from in vivo experiments on humans and pigs at different
times of the breathing cycle. The data were acquired from the Department of Radiology and the
Division of Medical and Biological Informatics of the German Cancer Research Center Heidelberg.
The paper is organized as follows: the following section discusses modeling aspects along with
the corresponding governing equations. Computational approaches for the individual fields as well
as for the coupled problem are given next. Finally, we will present results in the bronchial tree
under normal breathing conditions and mechanical ventilation.

2. MODELING AND GOVERNING EQUATIONS

2.1. Airway walls

The configuration of the airway walls is fairly complex and varies at different generations. The
trachea consists of C-shaped cartilaginous rings connected by smooth muscles. The cartilage
mainly governs the stiffness of the airway walls. In the lower airways, the cartilage becomes
disconnected and the airway walls are softer. In the bronchioli at around generation 13, the cartilage
disappears completely. For small strain, elastin fibers mainly contribute to the stiffness. Collagen
fibers are folded in the undeformed configuration and contribute to the stiffness only under large
deformations. The glands, smooth muscle cells, nerves, ground substance, etc. have a much smaller
stiffness than elastin fibers and cartilage and hence do not significantly contribute to the stiffness of
the airway walls. It is also well known that the human tissue behaves visco-elastic and non-linear.
Since we expect only small strains and due to lack of experimental data, we assume the airway
walls to behave linear elastic, which seems to be fair for first studies. The assumption of small
strains will be verified in our numerical simulations. However, we will take large deformations,
i.e. geometric non-linearities, into account. The development of more complex material models
will be a topic of future investigations.
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It is well known that arterial walls are prestressed when they are load free. McKay et al.
[50] studied the prestressing of excised (load-free) airways of different generations and species.
Therefore, the airways were opened in longitudinal direction and the opening angles were measured.
If the airways were prestressed, large opening angles would be measured due to the stress relaxation.
McKay et al. [50] found that the results are species dependent. Very small up to no opening
angles were obtained for human and porcine lungs, whereas large opening angles were obtained
for sheep and rabbit lungs. This indicates that human and porcine lungs are stress free under
load-free conditions. Hence, no prestressing conditions have to be taken into account in our airway
wall model. We also would like to note that the observations made in McKay et al. [50] partially
contradict earlier observations in Han and Fung [51] who looked at excised canine and porcine
lungs.

The governing non-linear equation for the airway walls is the linear momentum equation given by

�Sd̈=∇0 ·(F ·S)+�SfS in �S (1)

where d are the displacements, �S and fS represent the density and body force, respectively, the
superscript S denotes the solid domain and the superscript dot denotes material time derivatives.
A Lagrangian formulation will be employed in the solid domain. For the employed St Venant–
Kirchhoff type of material, the second Piola–Kirchhoff stress tensor S is related to the Green–
Lagrangian strains E with the consistent tangent operator C via

S=C :E (2)

with

E= 1
2 (F

T ·F−I) (3)

where F=I−∇0d represents the deformation gradient and the index 0 indicates that partial deriva-
tives are taken with respect to material coordinates X. As mentioned above within this paper we
will account for geometrical non-linearities but we will assume the material to be linear elastic.
Since it is extremely difficult to obtain even one-dimensional stress–strain curves for real lung
tissue or components of the airway walls in general, this assumption seems to be fair. The thick-
ness of the airway walls is assumed to be 1.65mm in all generations. Mainly based on cartilage,
the effective Young’s modulus is chosen as E=9MPa. We note that the material parameters are
first patient dependent and second subjected to a severe scatter. Therefore, we tested different
combinations of material parameters for selected configurations but we will present results only
for the above-mentioned material parameters.

2.2. Airway flow

We assume a Newtonian fluid under unsteady incompressible flow conditions. The underlying
governing equation is the Navier–Stokes equation formulated on time-dependent domains:

�u
�t

∣∣∣∣
v
+(u−uG) ·∇u−2�∇ ·e(u)+∇ p= fF in �F (4)

∇ ·u=0 in �F (5)

where u are the velocities, p is the pressure, uG is the velocity of the grid, a superscript F denotes
the fluid domain and ∇ denotes partial derivatives with respect to the spatial coordinates x, �=�/�F
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is the kinematic viscosity with viscosity � and fluid density �F; fF is the body force. The kinematic
pressure is represented by p where p̄= p�F is the physical pressure within the fluid field. The
balance of linear momentum (4) refers to a deforming ALE frame of reference denoted by v where
the geometrical location of a mesh point is obtained from the unique mapping x=�(v, t). The
stress tensor of a Newtonian fluid is given by

rF=− p̄I+2�e(u) (6)

with the compatibility condition

e(u)= 1
2 (∇u+∇uT) (7)

where e is the rate of deformation tensor.

2.3. Boundary conditions

The initial and boundary conditions in the fluid domain are

u(t=0) = u0 in �F

u= û on �F
D (8)

r ·n= ĥF on �F
N

where n denotes the normal to the fluid boundary �F=�F
D∪�F

N, �F
D∩�F

N=∅, where �F
D is the

Dirichlet boundary and �F
N is the von Neumann boundary; ĥF are the prescribed tractions.

We study healthy and diseased/damaged lungs under normal breathing and mechanical venti-
lation. For normal breathing conditions, a tidal volume of 2l is assumed, which is a reasonable
assumption for moderate activity conditions. For mechanical ventilation, experimental data from
the respirator are available. There are two strategies to apply boundary conditions. First, velocity
inflow conditions at the trachea and constant (uniform and non-uniform for healthy and diseased
lungs, respectively) pressure outflow conditions at all outflow boundaries can be applied under
inspiratory flow conditions. Then, for the exhalation cycle, the mass flow at the outlets is imposed
as velocity inflow boundary conditions where the same profile as for the inspiration is assumed.
Alternatively, a pressure time history can be applied at the outlets such that the desired tidal volume
is obtained. For the case of normal breathing, the pressure time history at the outlets would be
sinusoidal, negative at inspiration and positive at expiration as it occurs in ‘reality’. The advantage
is that inspiration and expiration can be handled quite naturally within one computation. The
difficulty is to calibrate the boundary conditions such that the desired tidal volume is obtained,
which is an iterative procedure. We note that due to the deformable airway structure, care has to
be taken when Dirichlet ‘inlet’ boundary conditions are applied under expiration.

The boundary conditions under normal breathing conditions are shown in Figure 1 for one
breathing cycle which lasts 4s, i.e. 2s inspiration and 2s expiration. We assume a parabolic
inlet boundary velocity profile although the boundary conditions at the trachea are probably more
complex, see, e.g. Ma and Lutchen [16].

For the imposition of the boundary conditions under mechanical ventilation, we used the data
from the respirator. In the experiments, the patients were ventilated with a positive end expiratory
pressure (PEEP) of 5mbar. The tidal volume was 400ml and the ratio between inspiration time
and expiration time I :E=1 :2 where an inspiration cycle was 1 s. Mechanical ventilation was
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Figure 1. Sinusoidal boundary conditions for normal breathing.

Figure 2. (a) Pressure time history and (b) flow time history of the respirator for the
mechanically ventilated lung [52].

performed volume controlled. The pressure time history for one breathing cycle and the corre-
sponding flow time history is shown in Figure 2. These curves were recorded during mechanical
ventilation for patients in the ICU [52]. We tested uniform and non-uniform boundary conditions
at the outlets. For the case of non-uniform boundary conditions, we set the pressure consistently
at all outlets of the right lobe of the lung twice and three times as high as on the left lobe. This
should model a diseased lung where a higher stiffness and resistance is expected in the damaged
parts of the lung.

The initial and boundary conditions in the solid domain are

d(t=0) = d0 and ḋ(t=0)= ḋ0 in �S

d= d̂ on �S
D (9)

S·n= ĥS on �S
N

where �S
D and �S

N denote the Dirichlet and Neumann partitions of the structural boundary, respec-
tively, with �S=�S

D∪�S
N, �

S
D∩�S

N=∅ and d̂ and ĥS denote the prescribed Dirichlet and Neumann
values.

The airway walls were fixed at the inlet, i.e. at the top of the trachea. The rest of the lung was
allowed to move freely. The surrounding tissue and potential pressure differences that hamper the
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Figure 3. Deformation of the lung under mechanical ventilation at different times during the respiration
cycle: (a) 0.2 s and (b) 0.9 s.

movement of the lung were not taken into account in this study. A deformation plot of the lung
under mechanical ventilation at different times during the respiration cycle is shown in Figure 3
exemplarily for a mechanically ventilated lung.

3. COMPUTATIONAL APPROACHES

3.1. Computational fluid and solid dynamics

Owing to the complex geometry, the Navier–Stokes equations (4) and (5) in the fluid domain
are discretized in space by equal-order linear tetrahedral elements with GLS-type stabilization
[53–55]. Details of the discretization of the ALE formulation of the Navier–Stokes equations by
means of stabilized finite elements are given in Förster et al. [48]. Implicit one-step-� and BDF2
schemes are used to discretize this set of equations in time. The occurring non-linearities are dealt
with Newton or fixed-point-like iteration schemes [49]. The generalized minimal residual iterative
solver with ILU preconditioner, which is available within the open-source package AZTEC [56],
is used in the fluid domain.

Spatial discretization of the airway walls is done through mixed/hybrid triangular elements based
on a 7-parameter shell formulation [46, 47]. This system is solved using the non-linear version of
the ‘generalized-� method’ of Chung and Hulbert [57] along with consistent linearization and a
Newton–Raphson iterative scheme.
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3.2. Computational FSI

As stated in the Introduction, the partitioned solution approach is based on a domain decomposition
that separates the fluid and the solid. The ‘wet’ surface of the solid acts here as a natural coupling
interface �FSI across which displacement and traction continuity at all discrete time steps has to
be fulfilled:

d�(t) ·n=r�(t) ·n and u�(t) ·n=uG�(t) ·n= �r�(t)

�t

∣∣∣∣
v
·n (10)

rS�(t) ·n=rF�(t) ·n (11)

where r are the displacements of the fluid mesh and n is the unit normal on the interface. Satisfying
the kinematic continuity leads to mass conservation at �FSI, satisfying the dynamic continuity
yields conservation of linear momentum and energy conservation finally requires to simultaneously
satisfy both continuity equations. The algorithmic framework of the partitioned FSI analysis is
discussed in detail elsewhere, Küttler and Wall [36], Mok and Wall [40] and Wall et al. [44].

The Dirichlet–Neumann partitioning with the fluid domain acting as Dirichlet partition with
prescribed velocities u� and the structure domain acting as Neumann partition loaded with interface
forces f� are particularly suited for partitioned FSI solutions, at least from an implementational
point of view. A Dirichlet–Neumann coupling algorithm with synchronous time discretization
[36, 40, 44] and block Gauss–Seidel iteration using Aitken-style relaxation is considered here. For
stability reasons strong coupling schemes are essential for these kinds of problems as has been
shown in the analysis in Förster et al. [45]. Let (·)I and (·)� denote variables or coefficients in the
interior of a subdomain � j and on the coupling interface �FSI, respectively, while a vector without
any of the subscripts I and � comprises degrees of freedom on the entire subdomain including
interior and interface.

To highlight the coupling behavior, the following outline abbreviates the non-linear field equation
for solid and fluid, respectively, with the symbolic systems

ASdS= fS and AFuF= fF (12)

In every time step the subsequent calculations have to be performed.

1. Transfer the latest structure displacements dS�FSI,i+1 to the fluid field, determine the appropriate

fluid velocities at the interface uS�FSI,i+1 (satisfying the geometric conservation law) and
calculate the fluid domain deformation.

2. Solve for the inner fluid velocities and pressures uFI,i+1

AF
IIu

F
I,i+1= fFIext−AF

I�FSI
uS�FSI,i+1 (13)

3. Find the fluid forces at the interface �FSI

fF�FSI,i+1=AF
�FSII

uFI,i+1+AF
�FSI�FSI

uS�FSI,i+1 (14)

4. Solve for the structural displacements⎡
⎣AS

�FSI�FSI
AS

�FSII

AS
I�FSI

AS
II

⎤
⎦

⎡
⎣d̃S�FSI,i+1

dSI,i+1

⎤
⎦=

[
fS�FSI ext

−fF�FSI,i

fSIext

]
(15)
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5. Relax the interface displacement

dS�FSI,i+1=�i d̃
S
�FSI,i+1+(1−�i )d

S
�FSI,i

(16)

The iteration finishes when the error of the interface displacement d̃F�FSI,i+1 is sufficiently small.

4. RESULTS

The calculations were carried out with the parallel in-house research code baci [58, 59] on parts
of a 54-node Opteron cluster with two 2.6GHz processor nodes and 4GB memory per node using
InfiniBand for the network communication. The parallelization was done using message passing
interface taking advantage of distributed memory.

4.1. Background information for result presentation

4.1.1. Lung geometry. The bronchial tree of the upper airways was obtained from CT scans of
human and porcine lungs under in vivo conditions. Therefore, CT scans were prepared under
normal breathing and mechanical ventilation at different times. The images were segmented from
the Division of Medical and Biological Informatics of the University of Heidelberg by a region-
growing technique and the surface of the bronchial tree was obtained by a 3D-skeleton method
[60] from a system based on Medical Imaging Interaction Toolkit, see Wolf et al. [61]. The
surface model of the bronchial tree was stored in stereolithography format (.stl). The surface
was then smoothed by a Gauss filter. The outlets of the airways were cut perpendicular to the
center line of the airways to facilitate the imposition of boundary conditions. For the fluid, an
unstructured Eulerian tetrahedral finite element mesh was then generated from the surface model.
For the solid, triangular Lagrangian shell elements were generated from the surface model that
are non-conforming to the fluid mesh. The ALE mesh coincided with the Eulerian fluid mesh. We
refined the mesh from 110 000 up to 520 000 fluid elements and 50 000–295 000 shell elements,
respectively, until the calculated mass flow rate was within a tolerance of 1%. The stl model used
as initial mesh for the simulation was the CT-based model at the beginning of the inspiration cycle.
The models at other time steps can be used in comparison with the deformed configuration of the
bronchial tree in the numerical simulation.

4.1.2. Flow phenomena and measures. In this study, flow patterns and flow distributions are of
interest since they play a major role in the damage process of the lung tissue. It is expected that
stress concentrations occur at flow peaks with high secondary flow intensities. The secondary flow
intensity � at certain cross sections can be evaluated by

�=
∫
A v̄s dA∫
A v̄p dA

(17)

where A is the cross-sectional area, v̄s =
√

v1s1+v2s2 is the mean secondary velocity, vs1 and vs2

are the velocity components perpendicular to the axial flow direction and v̄p is the amplitude of
the axial velocity.
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Figure 4. Typical axial and secondary airflow patterns in the lung.

Numerical studies on the bifurcation flow of lung models consistently identified different types
of secondary flow pattern such as Dean-flow or swirl-flow pattern (Figure 4). Parabolic, skewed and
M-shaped flow patterns were typically observed in the axial direction depending on the Reynolds
number. While parabolic-flow patterns characterize low Reynolds number flows, M-shaped axial
flow patterns were observed for high Reynolds number flows. Studies on symmetrical Weibel
models revealed a Dean-flow pattern in the daughter tube while a skewed swirl pattern was observed
in the grandchild tube, see, e.g. Comer et al. [5, 6] and Nowak et al. [17] although we know that
the flow patterns in real lungs are more complex.

It is well known that the flow distribution in the healthy human lung is uniform and it is obvious
that the flow distribution for diseased and damaged lungs become non-uniform. The influence of
the flow distribution on the flow patterns and stress transmission is not clear. In our computations
we will refer to the normalized mass flow [ml/mm2] which is measured at every outlet and then
divided by the cross-sectional area at the corresponding outlet.

4.2. Normal breathing

At inspiration, the trachea exhibits a strong primary flow in the axial direction. There is barely
secondary flow present and there is strong off-axis flow due to the geometric asymmetry. The
flow is nearly parabolic up to the primary bronchi. After the first flow divider, a secondary Dean
flow is observed in the right main bronchus that is strongly asymmetric (Figure 6(a)). In the left
main bronchus the secondary flow is skewed towards the bottom wall (Figure 6(b)); for the tube
definitions, see Figure 5. While the axial flow in the left bronchus exhibits a skew pattern towards
the inner wall close to the next flow divider, the right main bronchus shows an M-shape (Figure 7).
The right main bronchus is shorter than the left main bronchus and bifurcates into two secondary
bronchi. The right main bronchus bifurcates into three secondary bronchi. In the airways G2.3,
G2.4, G2.5, a secondary flow swirl pattern is present (Figure 6(c) and (d)). The ‘total’ flow pattern
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Figure 5. Tube definitions for the human bronchial tree (only tubes that will be considered are numerated).

at peak flow rate in the bronchial tree is shown in Figure 8 for two different points of view. As
can be seen, the flow distribution looks relatively homogenous.

The expiratory flow differs from the inspiratory flow. The flow does not split at the flow divider,
but the streams join from the daughter tubes, so that near the flow divider the velocity profiles
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Figure 6. Secondary airflow pattern in the human lung under normal breathing at inspiration, FSI simulation:
(a) G1.1; (b) G1.2; (c) G2.3; and (d) G2.5.

in the bifurcation plane have indentations at the center. Generally, in contrast to inhalation flow,
expiratory flow features vary only slowly with axial distance. We also note that the flow pattern
is similar almost in the entire breathing cycle. Three to four vortices occur in the secondary flow
pattern in all tubes. Changes occur at the transition from inspiration and expiration.

In Figure 9, variations of the secondary flow intensity during the inspiration and expiration
cycles are illustrated for tubes up to the third generation. Exemplarily, we only show the results of
the left bronchial tree. Except at the transition between inspiration and expiration, the secondary
flow intensity is more or less uniform. Also the course of the secondary flow intensity over time
is similar.

The results obtained from pure CFD simulations are quite different. The secondary airflow
patterns of the CFD simulations in the tubes G1.1, G1.2, G2.3 and G2.5 are shown in Figure 10.
They are quite different from the airflow patterns of the FSI simulation. For example, while tube
G2.3 exhibits a clear secondary swirl-flow pattern in the FSI simulation, a Dean flow is present
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Figure 7. Airflow pattern under normal breathing conditions at inspiratory peak flow rate for the FSI
simulation at (a) G1.1 and (b) G1.2.

Figure 8. Airflow in the human lung under normal breathing at inspiratory peak flow rate
for two different viewpoints.

in the CFD simulation. The secondary airflow intensities of the CFD and FSI simulations are
slightly different, compare Figure 9(a) and (b) with 9(c) and (d). The deviations become more
pronounced with distance from the inlets. For example, we observe up to 20% deviations in the
secondary airflow intensities at tube G2.5 under inspiration, the differences in the main bronchi
and the trachea are rather marginal.
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Figure 9. Secondary airflow intensity in the human lung under normal breathing at inspiration and
expiration: (a) FSI simulation; (b) FSI simulation; (c) pure GFD simulation; and (d) pure CFD simulation.

The maximum mean Reynolds number Re=	uD/�, where 	 is the density of air, D the tube
diameter‡ and � the dynamic viscosity at peak flow rate under inspiratory flow in the trachea is
4042. The corresponding maximum mean Reynolds numbers in the subsequent bifurcations were as
follows: main bronchus 3007, secondary bronchi 2111 and tertiary bronchi 1496. The Wommersley
number �=0.5D

√
�/�, where � is the angular frequency, is often used as a measure for the quasi-

steadiness of a flow. It is assumed that the flow is quasi-steady for low Wommersley numbers,
e.g. �<1, see Zhang and Kleinstreuer [12]. Jan et al. [62] even reported that oscillatory flow at
peak flow rate can be assumed as quasi-steady for a Wommersley number �<16. [63] reported
about quasi-steady flow conditions in a symmetric model for Wommersley numbers �<4.3. The
Wommersley number in the initial configuration does not exceed a value of 2.5 in the trachea and
is below a value of 1 in the last generation.

The distribution of the principal tensile stresses in the airway model under inspiratory peak flow
rate is shown in Figure 11(a). The largest stresses occur close to the outlets and in the trachea,
especially close to the inlet where the trachea shows a slight curvature. The stresses are also
largest at bifurcation points, e.g. the carina, Figure 5. At expiratory flow, the stresses are slightly
higher in the lower part of the lung. Figure 11(b) shows the stress distribution at expiratory peak
flow. The stresses are higher when compared with inspiratory peak flow. We also note that stress
concentrations occur where streams are joining. The magnitude of the stresses in the left and right
lobes of the lung is similar at same generations for both inspiration and expiration.

The flow distribution is relatively balanced under normal breathing as shown in Figure 12(a).
The outlets are numerated arbitrarily in the model in ascending order.

‡We note that the cross section is not a circle and D is an ‘approximated’ diameter.
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Figure 10. Secondary airflow pattern in the human lung under normal breathing at inspiration, CFD
simulation: (a) G1.1; (b) G1.2; (c) G2.3; and (d) G2.5.

4.3. Mechanical ventilation

4.3.1. Healthy lung. The airflow patterns during mechanical ventilation at inspiration are similar
to those at normal breathing. The flow quantitatively differs from normal breathing because of
the shorter inspiration time, the different pressure/flow time history curves and the smaller tidal
volume. The Reynolds number in the entire bronchial tree is lower as under normal breathing.
Despite the different breathing patterns, the principal flow pattern is qualitatively quite similar
up to generation 2, i.e. in the trachea and in the main bronchi. After the first flow divider, a
skew pattern in the secondary flow is present in the two main bronchi, Figure 13(a) and (b);
we note that the right main bronchus exhibits a Dean-flow pattern under normal breathing. The
axial velocities show an M-shape in tube G1.1 and a skew pattern towards the inner wall in tube
G1.2 as under normal breathing. The flow patterns after generation 2 differ from those of normal
breathing. Figure 13(c) and (d) shows that the secondary flow pattern in tubes G2.3 and G2.5 are
different when compared with their counterparts at normal breathing. The secondary flow intensity
at selected cross sections in different generations is shown in Figure 14. Under inspiratory flow,
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Figure 11. Stress distribution (principal tensile stress) in the airways of the lung under inspiratory and
expiratory peak flow rate for normal breathing and the healthy human lung: (a) inspiration—normal

breathing and (b) expiration—normal breathing.

Figure 12. Normalized flow distribution for the human lung at the outlets under normal breathing,
mechanical ventilation for the healthy and diseased human lung: (a) healthy lung and (b) diseased lung.

the secondary flow intensity is similar as under normal breathing although the breathing patterns
are generally different.

The flow at mechanical ventilation during expiration differs significantly from inspiratory flow
as well as from expiratory flow at normal breathing. At the end of the expiration, the pressure is
set almost instantaneously to the PEEP pressure of the ventilator that results in a peak flow rate
right at the beginning of the expiration cycle. The peak flow at this time is more than twice as
high as the maximum peak flow under inspiration. Owing to the sudden pressure drop, the flow
deteriorates fast and at the middle of the expiration cycle, most of the air is already expirated.
The flow at the beginning of the expiration is unsteady and flow patterns change in time. The
secondary flow intensity is significantly higher at this time. Oscillations of the airways can be
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Figure 13. Secondary airflow pattern in the healthy human lung under mechanical ventilation at inspiration,
FSI simulation: (a) G1.1; (b) G1.2; (c) G2.3; and (d) G2.5.

observed probably by the large and sudden ‘applied’ FSI forces at the beginning of the expiration
cycle. We expect that these initial oscillations will be reduced when the surrounding tissue and
potential differences in the pressure inside and outside the bronchial tree will be included in future
simulations.

The magnitude of the stresses at the beginning of the expiration cycle is higher compared with
inspiration. At the middle of the expiration cycle, the flow is quasi-steady and the stresses in the
airway walls as well as the secondary flow intensity are significantly decreased. The magnitude
of the stresses at (selected) certain times are similar at same generations. This was also observed
under normal breathing.

The flow distribution remains relatively balanced also under mechanical ventilation and is pretty
similar to the flow distribution for normal breathing, Figure 12(a). Because of the significantly
smaller tidal volume, the Reynolds numbers under mechanical ventilation are smaller than those
under normal breathing conditions. At peak flow rate and inspiratory flow, the mean Reynolds
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Figure 14. Secondary airflow intensity in the human lung under mechanical ventilation at
inspiration and expiration for the healthy lung: (a) FSI simulation; (b) FSI simulation; (c) pure

CFD simulation; and (d) pure CFD simulation.

Figure 15. Secondary airflow intensity in the human lung under mechanical ventilation at inspiration and
expiration for the diseased lung: (a) FSI simulation and (b) FSI simulation.

numbers at selected cross sections are: trachea 1823, main bronchus 1397, secondary bronchi 1127
and tertiary bronchi 893.

The differences between pure CFD simulations and FSI simulations under mechanical ventilation
are very similar as under normal breathing and therefore not further discussed.

4.3.2. Diseased lung. To model a diseased lung, non-uniform outlet boundary conditions are
assumed. Therefore, we set the pressure outlet boundary conditions consistently twice and three
times higher on the right lobe of the lung compared with the left lobe. This should model a
higher stiffness that occurs when parts of the lung in the lower generations are collapsed or highly
damaged. We did not consider other configurations of lung damages in the lower parts and leave
this for future studies.
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Figure 16. Flow and stress distribution (principal tensile stress) in the airways of the diseased lung under
mechanical ventilation: (a) velocity and (b) stress.

The airflow patterns for diseased lungs differ significantly from the airflow patterns for healthy
lungs in inspiration as well as in expiration. The flow distribution is no longer uniform because of
the different pressure outlet boundary conditions. Only 30% of the air enters the diseased part of
the lung, i.e. the right lobe. The normalized flow measured at every outlet is shown in Figure 12.

The expiratory flow is relatively similar to the expiratory flow of the healthy lung under mechan-
ical ventilation. The flow is unsteady at the beginning of expiration with varying secondary flow
patterns. The main difference from the healthy lung occurs in the trachea where the strong airflow
from the left main bronchus hits the relatively weak airflow from the right main bronchus. The
secondary flow intensity at expiration in the well-ventilated left main bronchus is surprisingly lower
(Figure 15). We believe that the higher secondary flow in the right lobe of the lung, especially
close to the airway walls, is responsible for the non-uniform stress distribution, see Figure 16.
Figure 16 also shows the non-uniform flow distribution.

5. CONCLUSION AND FUTURE WORK

We have presented an approach and detailed simulation results of FSI under transient incompressible
flow conditions in the lower airways of healthy and diseased lungs based on CT scan geometries for
normal breathing conditions as well as for mechanical ventilation. Therefore, we have considered
a four-generation model. For the fluid, we have used tetrahedral elements whereas shell elements
were employed for the airway walls. FSI was realized based on an ALE formulation and a
strongly coupled partitioned approach. The healthy lung is modeled by imposing uniform outlet
boundary conditions and non-uniform outlet boundary conditions describe a diseased lung where
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non-resolved parts of the lung are damaged and hence will have a higher stiffness. Linear elastic
material behavior is assumed for the airway walls. This is definitely a simplification since it is well
known that the components of the airway walls behave non-linear visco-elastic. Since the structure
of the airway wall is fairly complex and due to the lack of experimental data, this assumption
seems to be justifiable, also because only small changes in the cross-sectional area were observed
in the experiments. For patients with chronic obstructive lung disease (COPD), i.e. a disease in
the trachea, this assumption does not hold any more.

Moreover, we have neglected effects of the surrounding tissue and potential pressure changes
inside and outside the bronchial tree, e.g. under sneezing conditions. In other words, our bronchial
tree is able to move freely without any imposed constraints. This will be subject of future inves-
tigations.

We found that under inspiratory flow, flow patterns and secondary flow intensities are similar in
healthy human lungs, no matter whether we consider normal breathing or mechanical ventilation.
The flow distribution remains also homogenous. Under expiratory flow, flow patterns and secondary
flow intensities differ between the mechanical ventilated lung and the lung under normal breathing
conditions. These differences occur probably due to the sudden pressure drop of the respirator. The
flow in diseased lungs differs significantly from the flow in healthy lungs. The flow distribution is
non-uniform. Secondary flow intensities are higher in the diseased part of the diseased lung. The
magnitude of the stresses for the healthy lung in the left and the right lobes was similar at same
generations. This is definitely not the case for diseased lungs.

Compared with former CFD studies of the same lung geometry, we found that the influence of the
FSI with respect to the normalized flow distributions, see Figure 12, and secondary flow intensities
is moderate. Deviations of these results are within 15%. However, airflow patterns, both axial and
in-plane, were quite different between CFD and FSI simulations, especially in lower generations,
although the changes in the cross sections are rather minor, i.e. around 2% for cross sections that
we checked. The influence of deformable airways will even become more pronounced for COPD
patients. More importantly, pure CFD simulations are not capable of capturing the stresses in the
lung tissue necessary to assess the damage state of the lung. The assessment and evaluation of
damage states in the lung are important in order to develop a patient-specific protective ventilation
strategy. The maximum stresses in these preliminary studies were below 300 kPa. However, as
mentioned previously, for COPD patients or other patients with lung injuries, higher stresses and
larger deformations will occur.
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